Abstract

This paper presents results from an experimental investigation of mechanical loosening in bolted joints due to cyclic transverse loads. The influence on the resistance to loosening of basic parameters such as preload, fastener material elastic modulus, nominal diameter, thread pitch, hole fit and lubrication is quantified. Sixty-four tests have been performed as part of a nested-factorial design in which the nominal diameter is the nesting factor of preload, thread pitch and hole fit. A statistical analysis identifies the factors and interactions that significantly affect the resistance to loosening and it is found that the preload and the fastener elasticity are the most influencing parameters. A statistical model is developed that predicts the level of loosening reached by a threaded fastener under defined conditions. The analysis shows that optimum conditions to avoid fastener loosening are high preload, low modulus of elasticity, large diameter, lubrication, tight fit and fine threads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.