Abstract

Recently, Lue, Miller, and Dresner reported that the stability margin of cable-in-conduit superconductors is multivalued for certain combinations of transport current, ambient helium pressure, and externally imposed helium flow. There is a limiting transport current below which the stability margin is single-valued and equal to the upper stability margin. The theory of ref. 1 is used here to determine the scaling of the limiting transport current with critical temperature, ambient helium temperature, resistivity of copper, length of the heated zone, duration of the heat pulse, hydraulic diameter of the helium-filled part of the cable, volume fraction of copper in the metal, and volume fraction of metal in the cable. Combined with experimental data, the scaling relation provides a sound basis for design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.