Abstract

Natural gas is an attractive fuel for internal combustion engines in light of its potential for reduced greenhouse gas and particulate emissions, and significant reserves. To facilitate natural gas use in compression ignition engines, pilot-ignited direct-injection natural gas combustion uses a small pilot injection of diesel to ignite a more significant direct injection of natural gas. Compared to modern diesel combustion, this strategy is a promising technology for the reduction of CO2emissions while retaining diesel-like efficiency without a significant CH4emission penalty. To further develop this technology, investigation of in-cylinder combustion processes is needed to identify the primary fuel conversion processes. The objective of this work was to provide a framework of conceptual understanding by identifying key processes in a typical pilot-ignited direct-injection natural gas combustion event and characterizing their sensitivity to fuel injection parameters. A parametric sweep of injection pressure, natural gas injection duration, and relative timing of the diesel pilot and natural gas injections was performed in an optically accessible 2 L single-cylinder engine. Combined heat release rate and OH*-chemiluminescence reaction zone analysis was used to demarcate the transition from ignition reactions to primary natural gas heat release. Five distinct combustion processes were identified: (1) pilot auto-ignition; (2) natural gas ignition; (3) rapid, distributed partially premixed natural gas combustion; (4) non-premixed combustion; and (5) late-cycle oxidation. While natural gas ignition was found to be insensitive to injection pressure, it was strongly affected by the time between pilot and natural gas injections. Reducing the relative injection timing from +8° to −6° resulted in the primary natural gas heat release transitioning from non-premixed, to distributed partially premixed, to stratified premixed flame propagation as a result of increasing natural gas premixing. The presented measurements and analysis serve to refine an initial conceptual model of the combustion process and lay the groundwork for future, more focused studies of pilot-ignited, direct-injection natural gas combustion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.