Abstract

We have performed comprehensive electromagnetic simulations and preliminary experiments to explore the effects of geometrical and material parameters on the extraordinary optical transmission (EOT) through periodic arrays of subwavelength holes in a bilayer stack consisting of a gold or silver film atop a vanadium dioxide film (Au/Ag + VO2), where the latter undergoes a semiconductor-to-metal phase transition. Using the finite-difference time-domain (FDTD) and finite-element methods (FEM), we vary iteratively the array periodicity, VO2 film thickness and hole diameters, as well as the refractive index inside the VO2-layer holes and the VO2 optical constants. For each variation, we compare the metallic-to-semiconducting ratios of the zero-order transmission (T00) peaks and find sharp maxima in these ratios within narrow parameter ranges. The maxima arise from Fabry-Perot and Fano-type resonances that minimize T00 in the semiconducting phase of the perforated bilayers. At a fixed array period, the primary factors controlling the VO2-enabled EOT modulation are the VO2 thickness, diameter of the VO2-layer holes, and absorption in the two VO2 phases. Besides uncovering the origins of the higher metallic-phase T00, this study provides a protocol for optimizing the performance of the bilayer hole arrays for potential uses as dynamically tunable nano-optical devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.