Abstract

Formulation for the effect of dissipation of excess pore water pressure on one-dimensional advective-diffusive transport of solutes in clays is presented. The formulation is based on the effect of the rate of consolidation or swelling and excess pore pressure or suction dissipation on transient, nonlinear advective component of transport through clay. One partial differential equation is presented for advective diffusive transport that is dependent upon soil/solute properties and transient hydraulic head gradient, which is calculated from the Terzaghi consolidation equation. Finite difference method is used to solve the system of partial differential equations for consolidation and solute transport. Four hypothetical cases are evaluated to demonstrate the effect of consolidation under loading and swelling under hydraulic gradient on advective-diffusive transport and breakthrough in single and double drainage clay layer. The results show that consolidation in doubly drained clay impacts concentration profiles, but does not significantly impact breakthrough of the diffusive flux. Consolidation under single drainage conditions, significantly impacts the diffusional flux. When drainage path is the same as the diffusional flux, consolidation accelerates transport and breakthrough time can be less than 5% of the diffusional breakthrough time under no consolidation. Swelling under hydraulic gradient application can either accelerate or retard the advective diffusive flux, depending upon the ratio of the effective diffusion coefficient relative to the coefficient of consolidation. Higher the effective diffusion coefficient and lower the coefficient of consolidation result in an increase in the effect of pressure dissipation on transport.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.