Abstract

Most reinforced concrete (RC) bridges in many countries are medium-span length structures built in the last decades and designed for very low seismic forces. The evolution of seismic codes and the average age of the bridges require the evaluation of their seismic vulnerability. This study assesses the expected capacity, demand and damage of seismically deficient medium-length highway bridges, supported in frame-type piers using dynamic nonlinear methodologies. A parametric study of reinforced concrete retrofitted bridges with RC jacketing was conducted. The non-retrofitted structures are 30 m span simple supported bridges with pier heights in the range of 5–25 m. The main emphasis of the study is the assessment of the jacket parameters’ contribution to the seismic vulnerability of bridges. Particularly, it is quantified how jacket thickness and reinforcement ratio affect the probability of reaching a particular damage limit state. The retrofitted scheme includes three jacket thicknesses and three different longitudinal steel ratios. The results evaluate bridge demands and fragility curves to quantify the influence of RC jacketing on the seismic response of structures and allow to select the best jacket parameters that improve the expected seismic behavior of the bridge models. Additionally, the influence of model hysteresis degradation on the expected damage of retrofitted bridges was also determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.