Abstract
In terms of the traditional dynamic vibration absorber (DVA), the vibration damping effect improves with the mass ratio of DVA increasing, and the vibration level of target system is effectively controlled in the case that the mass ratio of DVA is large. This characteristic restricts the application of DVA to the track because of the limited available space. This study proposes one type of DVA with negative stiffness (NSDVA) applied to floating slab track to reduce the track vibration under the condition of small mass ratio and presents a design methodology of NSDVA attached on flexible system. Firstly, the mechanical model of floating slab with NSDVA is simplified to a two-degree-of-freedom system, and theoretical expressions of NSDVA’s optimal parameters, i.e., ratio of frequency, damping and stiffness are deduced according to the fixed-point expansion theory and stability condition. Secondly, with the combination of the multi-modal control theory and the finite element method, optimal parameters of NSDVA applied to a multi-degree of freedom (MDOF) system are calculated. 3-D finite element model of floating slab-NSDVA is built in ABAQUS software, and the modal analysis of floating slab is conducted to determine the target modal and equivalent mass. Compared with the traditional Voigt type DVA, the NSDVA adopted in this paper is proved to be more effective to reduce the both floating slab and rail vibration level. The design methodology of NSDVA attached to a MDOF system presented in this paper is feasible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.