Abstract

Abstract A conventional technique for microfluidic droplet generation is Co-axial Flow Focusing (CFF) in which a contraction zone is placed downstream of the dispersed phase nozzle. In this contraction zone, the dispersed-phase (d-phase) fluid is pinched off by continuous-phase (c-phase) fluid to generate micro-droplets. Studying the influence of multiple parameters such as the fluids velocities and viscosities, the interfacial tension, and nozzle and orifice diameters on the droplet size is of great importance for the design and application of CFF devices. Thus, development of more complete numerical models is required. In this paper, we show our model is compatible with experimental data and then numerically investigate the effects of aforementioned parameters on the droplet generation in a CFF microfluidic device. Simulation results showed that the c–phase flow rate, viscosity and the interfacial tension had great impacts on the droplet size. The effect of the nozzle diameter on the generated droplet size was small compared to that of the orifice in a CFF device. Using the simulation results, a correlation was also developed and suggested which predicts the droplet size with less than 15% error in a wide range of the introduced dimensionless parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.