Abstract

A parametric study of the thermal performance during charging of a full-scale radial inlet diffuser in a cylindrical stratified chilled water storage tank was performed by applying factorial experimental theory to the results of simulations performed with a validated computational fluid dynamics (CFD) model. Part 1 describes the development and validation of the CFD model. Part 2 summarizes the results of the parametric study. Dimensional storage tank and inlet dif-fuser parameters having the potential to influence inlet thermal performance were identified, then formed into dimensionless groups using Buckingham Pi analysis. These included the inlet Richardson number (Ri), inlet Reynolds number (Re i ), ratio of diffuser radius to tank radius (RD /Rw ) and ratio of diffuser radius to diffuser inlet height (RD/hi). Thermal performance was measured in terms of thermocline thickness and equivalent lost tank height. Sixteen simulations comprising a full 2 k factorial experiment were completed and analyzed. Parameter ranges considered were as follows: Ri from 1.0 to 11.1, Re i from 1,000 to 12,000, RD /Rw from 0.2 to 0.4 and RD /hi from 5 to 10. Within these ranges, Ri, RD /Rw and RD /hi were found to be of first-order significance while Re i was not. Regression models of thermal performance metrics as functions of Ri, RD /Rw and RD /hi that are sufficiently simple to be useful for design were developed. These models agreed well with CFD simulations from which they were derived and with field data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.