Abstract

Adhesively-bonded joints are increasingly used in aeronautical industry. Adhesive joints permit to join complex shapes and reduce the weight of structures. The need to reduce the weight of airplanes is also increasing the use of composites. Composites are very anisotropic: in the fibre directions, unidirectional composites can be very strong and stiff, whereas the transverse and shear properties are much lower. Bonded joints experience peel loading, so the composite may fail in transverse tension before the adhesive fails. That is why it is important to study these joints and try to find reliable ways to predict the strength of joints with composite adherends. The main goal of this study was to understand the failure in adhesive joints with composites, bonded with adhesives with different characteristics, and find reliable ways to predict them. Experimental tests were carried with single lap joints with composite adherends and different adhesives, brittle and ductile, with several overlap lengths. A Cohesive Zone Model (CZM) was taken into consideration to predict the results observed during the experimental tests. The experimental results were also compared with simple analytical models and the suitability of each model was evaluated for each bonded system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.