Abstract

The performance of a pressure swing adsorption (PSA) process for production of high purity hydrogen from a binary methane-hydrogen mixture is simulated using a detailed, adiabatic PSA model. An activated carbon is used for selective adsorption of methane over hydrogen. The effects of various independent process variables (feed gas pressure and composition, purge gas pressure and quantity, configuration of process steps) on the key dependent process variables (hydrogen recovery at high purity, hydrogen production capacity) are evaluated. It is demonstrated that many different combinations of PSA process steps, their operating conditions, and the feed gas conditions can be chosen to produce an identical product gas with different hydrogen recovery and productivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call