Abstract

In the current study, the mid cross section of the dragonfly forewing was simulated at ultra-low Reynolds number. The study aims to understand better the contribution of corrugations found along the wing on the aerodynamic performance during a forward flight. Different flapping parameters were employed. FLUENT solver was used to solve unsteady, two-dimensional, laminar, incompressible Navier–Stokes equations. The results revealed that any stroke amplitude less than 1cm generated no thrust force. The stroke amplitude had to be increased to form the reversed Kármán vortices responsible for generating thrust force. The highest propulsive efficiency was found in the Strouhal number range 0.2 < St < 0.4 with a peak efficiency of 57% at St = 0.39. Changing the phase difference between pitching and plunging motions from advanced to synchronized caused lift force to drop 91% and thrust force to increase by 15%. On the other hand, changing the phase difference from synchronized to delayed caused lift and thrust forces to increase by 89% and 36%, respectively, and propulsive efficiency to deteriorate significantly. In all performed simulations, the airfoil was assumed to start motion from rest with no initial angle of attack. The increase in initial angle of attack generates a very high lift force with a fair loss for both thrust force and propulsive efficiency. The decomposition of flapping motion into its elementary motions revealed that the aerodynamic forces generated are a non-linear superposition from both pure pitching and pure plunging aerodynamic forces. This can be attributed to the non-linear interaction between unsteady vortices generated from these decomposed motions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.