Abstract

Carbon nanotube (CNT) growth mechanism in plasma enhanced chemical vapor deposition (PECVD) is presented. Previously developed atmospheric pressure glow discharge reactor was modified and used for this purpose. First, pressure-dependent transition (20–100 kPa) of CNT morphology was investigated with fixed input power (60 W) and different catalyst loading (Fe/Al2Ox: 20 nm). High-purity, vertically-aligned single-walled CNTs (SWCNTs) were synthesized when capacitively coupled non-thermal plasma was generated at atmospheric pressure. On the other hand, fraction of double-walled and multi-walled CNTs increased as total pressure decreased. Although CNT growth rate was decelerated at reduced input power (5–20 W), SWCNTs were also synthesized in the root growth regime at 20 kPa. Plasma-generated reactive species are the important driving force of CNT growth; however, generation and transportation of those species must be properly suppressed for selective growth of single-, double-, and multi-walled CNTs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call