Abstract
Using native vegetation to improve soil stiffness, stabilise slopes and control erosion is a rapidly evolving process. A theoretical model previously developed by the authors for the rate of tree root water uptake together with an associated numerical simulation is used to study the effects of a wide range of soil, tree, and atmospheric parameters on partially saturated ground. The influence of different parameters on the maximum initial rate of root water uptake is investigated through parametric and sensitivity analyses. Field measurements taken from previously published literature are compared with numerical predictions for validation. The rate of selected parameters such as potential transpiration and its distribution, suction at wilting point, the coefficient of permeability and the distribution of root length density are studied in detail. The analysis shows that the rate of potential transpiration increases the soil matric suction and ground settlement, while the potential transpiration rate has an insignificant effect on the distribution of soil suction. Root density distribution factors affect the size of the influence zone. Suction at the wilting point increases the soil matric suction and ground settlement, whereas the saturation permeability decreases the maximum soil matric suction generated. The analysis confirms that the most sensitive parameters, including the coefficients of the tree root system, the transpiration rate, the permeability of the soil and its suction at the wilting point should be measured or estimated accurately for an acceptable prediction of ground conditions in the vicinity of trees.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.