Abstract

A thermal model has been developed to investigate the potential of using the stored thermal energy of the ground for greenhouse heating with the help of an earth to air heat exchanger (EAHE) system integrated with the greenhouse located in the premises of IIT, Delhi, India. Experiments were conducted extensively during the winter period from November 2002 to March 2003, but the model developed was validated against the clear and sunny days. Parametric studies performed for EAHE coupled with the greenhouse illustrate the effects of buried pipe length, pipe diameter, mass flow rate of air, depth of ground and soil types on greenhouse air temperatures. Temperatures of greenhouse air with the experimental parameters of EAHE were found to be on an average 7–8°C more in the winter than the same greenhouse without EAHE. Greenhouse air temperatures increase in the winter with increasing pipe length, decreasing pipe diameter, decreasing mass flow rate of flowing air inside buried pipe and increasing depth of ground up to 4 m. Predicted and measured values of greenhouse air temperature, which were verified in terms of root mean square of percent deviation and correlation coefficient, exhibited fair agreement. Copyright © 2005 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.