Abstract

In this study, the parametric cubic spline scheme is implemented to find the approximate solution of the coupled nonlinear Schrödinger equations. This scheme is based on the Crank–Nicolson method in time and parametric cubic spline functions in space. The error analysis and stability of the scheme are investigated and the numerical results show that we can get different precision schemes by choosing suitably parameter values and this scheme is unconditionally stable. Two problems are solved to illustrate the efficiency of the methods as well as to compare with other methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call