Abstract

In the present work, we analyze the spatiotemporal dynamics of the kinetic wind energy with and without allowance for the kinetic energy of outliers. We first separated the contributions of the mean kinetic energy and the kinetic energy of the outliers and estimated the latter using robust parametric, semiparametric, and semi-nonparametric algorithms developed by the authors. The kinetic wind energy was estimated by the postprocessing of minisodar measurements of three wind velocity components and their variances in the lower 200 m layer of the atmosphere. By the outliers, we mean wind velocities, including wind gusts, the distribution of which deviates from the prior distribution of the majority of observations. A nonmonotonic increase in the kinetic energy of the outliers with sounding altitude was established. Physically, this can be explained by a nonmonotonic increase in the turbulent kinetic energy of local air vortices in the atmospheric boundary layer (ABL). The vertical extension of the outlier layers was of the order of 10–20 m.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call