Abstract
Noise suppression systems generally produce output speech with compromised quality. We propose to utilize the high quality speech generation capability of neural vocoders for noise suppression. We use a neural network to predict clean mel-spectrogram features from noisy speech and then compare two neural vocoders, WaveNet and WaveGlow, for synthesizing clean speech from the predicted mel spectrogram. Both WaveNet and WaveGlow achieve better subjective and objective quality scores than the source separation model Chimera++. Further, WaveNet and WaveGlow also achieve significantly better subjective quality ratings than the oracle Wiener mask. Moreover, we observe that between WaveNet and WaveGlow, WaveNet achieves the best subjective quality scores, although at the cost of much slower waveform generation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.