Abstract
We study the instability of a ring Bose-Einstein condensate under a periodic modulation of inter-atomic interactions. The condensate exhibits temporal and spatial patterns induced by the parametric resonance, which can be characterized by Bogoliubov quasi-particle excitations in the Floquet basis. As the ring geometry significantly limits the number of excitable Bogoliubov modes, we are able to capture the non-linear dynamics of the condensate using a three-mode model. We further demonstrate the robustness of the temporal and spatial patterns against disorder, which are attributed to the mode-locking mechanism under the ring geometry. Our results can be observed in cold atomic systems and are also relevant to physical systems described by the non-linear Schrodinger's equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Physical Review A
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.