Abstract

We consider a simple mesoscopic model of DNA in which the binding of the RNA polymerase enzyme molecule to the promoter sequence of the DNA is included through a substrate energy term modeling the enzymatic interaction with the DNA strands. We focus on the differential system for solitary waves and derive conditions--in terms of the model parameters--for the occurrence of the parametric resonance phenomenon. We find that what truly matters for parametric resonance is not the ratio between the strength of the stacking and the inter-strand forces but the ratio between the substrate and the inter-strands. On the basis of these results, the standard objection that longitudinal motion is negligible because of the second order seems to fail, suggesting that all the studies involving the longitudinal degree of freedom in DNA should be reconsidered when the interaction of the RNA polymerase with the DNA macromolecule is not neglected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.