Abstract

The present investigation deals with the assessment of parametric resonance behavior of new aircraft material, i.e., woven fiber metal laminated (FML) plates subjected to in-plane static and harmonic loading using finite element (FE) technique and Bolotin’s method. In this analysis, a four-node isoparametric element with five degrees of freedom per node is adopted. Based on the first-order Reissner–Mindlin theory, the parametric instability of FML plate subjected to in-plane harmonic loading is examined. A MATLAB code is developed for the parametric study on the dynamic stability of FML plates. The reliability of present formulation is checked by comparing numerical results obtained from present FE analysis with the published researches in the field. The influences of several factors, viz. static load factor, aspect ratio, length-to-thickness ratio, number of layers, ply orientation and boundary conditions on the dynamic instability regions are discussed. Significant variations of these factors on dynamic instability zones of FML plates are observed. The instability zones can be used as guidelines for the prediction of the dynamic behavior of FML plates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call