Abstract

A considerable amount of research has been conducted to develop reduced order models of bladed disks that can be constructed using single sector calculations when there is mistuning present. A variety of methods have been developed to efficiently handle different types of mistuning ranging from small frequency mistuning, which can be modeled using a variety of methods including component mode mistuning (CMM), to large geometric mistuning, which can be modeled using multiple techniques including pristine rogue interface modal expansion (PRIME). Research has also been conducted on developing reduced order models that can accommodate the variation of specific parameters in the reduced space; these models are referred to as parametric reduced order models (PROMs). This work introduces a PROM for bladed disks that allows for the variation of rotational speed in the reduced space. These PROMs are created by extracting information from sector models at three rotational speeds, and then the appropriate reduced order model is efficiently constructed in the reduced space at any other desired speed. This work integrates these new PROMs for bladed disks with two existing mistuning methods, CMM and PRIME, to illustrate how the method can be readily applied for a variety of mistuning methods. Frequencies and forced response calculations using these new PROMs are compared to the full order finite element calculations to demonstrate the effectiveness of the method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call