Abstract

This paper combines probabilistic and algebraic techniques for computing quantum expectations of operator exponentials (and their products) of quadratic forms of quantum variables in Gaussian states. Such quadratic-exponential functionals (QEFs) resemble quantum statistical mechanical partition functions with quadratic Hamiltonians and are also used as performance criteria in quantum risk-sensitive filtering and control problems for linear quantum stochastic systems. We employ a Lie-algebraic correspondence between complex symplectic matrices and quadratic-exponential functions of system variables of a quantum harmonic oscillator. The complex symplectic factorizations are used together with a parametric randomization of the quasi-characteristic or moment-generating functions according to an auxiliary classical Gaussian distribution. This reduces the QEF to an exponential moment of a quadratic form of classical Gaussian random variables with a complex symmetric matrix and is applicable to recursive computation of such moments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.