Abstract

Parametric planning models are designed for estimating the video quality, which can be applied to effective planning, implementation, and management of network video applications and communication networks. However, different from the bitstream-based evaluation models, the planning models are not allowed to exploit the video streams, with only limited information available for use, i.e., a few general parameters predetermined by the service providers and network operators. In this paper, a parametric planning model combining channel and video characteristics is proposed to estimate the video distortion caused by packet loss for Internet protocol television (IPTV) services. More specifically, the probability distribution of the channel states is determined by detailed analysis of the channel characteristics. Then, considering the influence of burst packet loss and the temporal dependence between frames, several sequence-level and frame-level parameters for video quality evaluation are derived from the perspective of the probability distribution of the channel states. Utilizing these parameters, the proposed model approximates the video quality considering the effects of direct packet loss and error propagation. Experimental results show that the proposed model has a superior performance for video quality estimation than the three commonly used parametric planning models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.