Abstract

Multinomial processing tree (MPT) models are tools for disentangling the contributions of latent cognitive processes in a given experimental paradigm. The present note analyzes MPT models subject to order constraints on subsets of its parameters. The constraints that we consider frequently arise in cases where the response categories are ordered in some sense such as in confidence-rating data, Likert scale data, where graded guessing tendencies or response biases are created via base-rate or payoff manipulations, in the analysis of contingency tables with order constraints, and in many other cases. We show how to construct an MPT model without order constraints that is statistically equivalent to the MPT model with order constraints. This new closure result extends the mathematical analysis of the MPT class, and it offers an approach to order-restricted inference that extends the approaches discussed by Knapp and Batchelder (2004). The usefulness of the method is illustrated by means of an analysis of an order-constrained version of the two-high-threshold model for confidence ratings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.