Abstract

For effective functioning in conditions of insufficient and unstable moistening of the south of Russia, tillage machines are developed on the basis of the block-modular construction principle with various working elements with replaceable elements. The possibility of a combination of replaceable elements is incorporated in the design of the working element for layer-by-layer soil-free tillage. This working body is equipped with curved, planar rippers or plastic elements. Qualitative indices of the technological process of layer-by-layer soil-free tillage of the working body with a curvilinear ripper, in comparison with others, reach a higher level: 97,4...98,5 % of fractions up to 50 mm, a sharp decrease in the content of erosion-hazardous particles in the surface layer to 15,12...18,13 %. The energy consumption for the functioning of the working element with plastic elements is 6 % less than with the curved ripper. The purpose of the research шы еру reduction of energy costs due to optimization of the parameters of the working body with a curved ripper while maintaining the quality of the technological process of layered soil-free tillage. Experimental studies on the three-factor Box plan for determining the parameters of the working body with a curvilinear ripper have been carried out, which ensures a reduction in energy costs for layer-by-layer soil-free tillage. The criterion for evaluation is the traction resistance of the working body, on which the energy costs directly depend on the performance of the technological process of layer-by-layer soil-free tillage. The greatest influence on the growth of traction resistance is due to an increase in the crumbling bit angle of the barpoint. With increasing speed, a reduction in traction resistance with a lower intensity is observed. This is explained by the less significant effect of the speed of movement of the working member on its traction resistance in comparison with the propagation velocity of the stress wave. With an increase in the depth of cultivation of the soil, the traction resistance increases. When fixing the speed of moving the working element at a level of 2,5 m/s, the optimal value of the depth of tillage is 28...29 cm, the angle of crumbling of the bit is 31...31,5 degrees.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call