Abstract

In order to manufacture various products with well-suited quality by machining, appropriate choice of process parameters is of prime importance. Hence, the present work focuses on modeling and optimization during Nd:YAG laser microgrooving of K-60 alumina ceramic material with an objective to find the optimum process parameters settings for minimizing the upper width deviation. The experiments are performed as per Box–Behnken design of experiments (BBDOEs) with four process parameters (diode current, pulse frequency, scanning speed, and number of passes) for parametric optimization in order to control the technological response characteristic (upper width deviation) of the precision microgrooves on K-60 alumina. Analysis of variance (ANOVA), response surface methodology (RSM), and particle swarm optimization (PSO) are subsequently proposed for predictive modeling and process optimization. Result shows the optimal setting of machining variables in laser microgrooving of K-60 alumina ceramic at pulse frequency of 4.4 kHz, diode current of 17 amp, scan speed of 35 mm/s, number of passes as 12, with estimated groove upper width deviation of 0.02669 µm. The methodology described here is expected to be highly beneficial for manufacturing industries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.