Abstract

Multiple manufacturing methods are used in the manufacturing industry. The most commonly used method is machining methods. With machining methods, production can be made from both raw materials and finishing processes can be applied to products produced with different production methods. However, the initial cost of machining operations is quite high due to factors such as the machining parameters used during the process, the rigidity of the machine, and the machining conditions. Today, the finite element method (FEM) has been widely used in order to reduce the initial cost of machining. For this reason, in our study, the machining of AISIP20 material was carried out with the FEM. This study, four different cutting speeds, feed rates and two different cutting depths were used and the lateral feed rate was kept constant. As a result of the study, the cutting force values and temperature values that occurred depending on the machining parameters were evaluated by finite element analysis. Consequently, in the study, an increase in the cutting force occurred in general with the increase of feed, cutting depth and cutting speed parameters, and a decrease in temperature values occurred with an increase in cutting speed and feed and constant cutting depth. The lowest cutting force was 36.11 N, while the highest was 1951.42 N. The lowest and highest temperature values that occur during the process are 448.98 and 593.14 °C, respectively. In this regard, for the optimization of the parameters, the proportional change between the parameters and the finite elements as well as the physical processes can be performed for the desired final product.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call