Abstract
Reducing the weight of the structures and choosing the materials used in mechanical engineering is an important and pressing economic and environmental problem. The design of a gear pump is developed from the point of view of the geometry of the gears, as well as the casing. This paper tested a gear pump casing using the environment of the ABAQUS 2020 system in the field of statistical strength analysis using the finite element method. The tests were carried out on the pump body and the front and rear covers, which were made of three types of materials (cast iron, aluminum, and polycarbonate), at a pressure of 28 MPa. After loading, the maximum stresses in the aluminum casing (177 MPa), the cast iron casing (157 MPa), and the polycarbonate (200 MPa) were determined. The largest stress concentrators are the grooves at the bottom of the pump casing. Rounding the internal chamber of the casing with a radius of 4 mm made it possible to reduce stress in this zone by 10 MPa. The parametric optimization of the front and back covers of the gear pump made it possible to reduce the total weight of the aluminum structure by 14%, the cast iron by 12%, and the polycarbonate by 16%. The 3D models show areas of minimal stress where the size and weight of the structure could be reduced in the future using a comprehensive approach involving parametric and topological analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.