Abstract

A minimization procedure is proposed to orient the design of a vertical take-off and landing drone towards sustainability. The vehicle is a novel cycloidal rotor drone and the principal objective is to yield the best ratio of payload to power consumption. The drone blades, rotor arms, and frame are designed for fused deposition modeling additive manufacturing with polylactic acid. 10 variables for the geometry, operation parameters, and material infill percentages are explored in search of the optimum design. A special derivation procedure allows obtaining the symbolic equations for the weight and power consumption of the drone. This permits optimization with a hybrid genetic and gradient method and exploring a broad range of aircraft sizes. 7 constraint equations ensure that the necessary assumptions made for the derivation remain valid and that the structural strength is adequate. For each new configuration, this method allows to quickly find a new optimum design using a desktop computer. Also, modifying the constraints, variables, or objective function is straightforward. Finally, the resulting design has a power loading of 0.0876 N/W.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.