Abstract

Abstract Nano crystalline materials are an area of interest for the researchers all over the world due to its superior mechanical properties such as high strength and high hardness. But the cost of nano-crystals is high because of the complexity and cost incurred during its production. This paper focuses on the application of Taguchi method with Fuzzy logic for optimizing the machining parameters of nano-crystalline structured chips production in High Carbon Steel (HCS) through machining. An orthogonal array, multi-response performance index, signals to noise ratio and analysis of variance are used to study the machining process with multi-response performance characteristics. The machining parameters namely rake angle, depth of cut, heat treatment, feed and cutting velocity are optimized with considerations of the multi-response performance characteristics. Using the Taguchi and Fuzzy logic method optimum cutting conditions are identified in order to obtain the smallest nanocrystalline structure via machining.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call