Abstract

Abstract Parametric optimization and performance analysis of a waste heat recovery system based on Organic Rankine Cycle, using R-12, R-123 and R-134a as working fluids for power generation have been studied. The cycles are compared with heat source as waste heat of flue gas at 140 °C and 312 Kg/s/unit mass flow rate at the exhaust of ID fans for 4 × 210 MW, NTPC Ltd. Kahalgaon, India. Optimization of turbine inlet pressure for maximum work and efficiencies of the system along the saturated vapour line and isobaric superheating at different pressures has been carried out for the selected fluids. The results show that R-123 has the maximum work output and efficiencies among all the selected fluids. The Carnot efficiency for R-123 at corrected pressure evaluated under similar conditions is close to the actual efficiency. It can generate 19.09 MW with a mass flow rate of 341.16 Kg/s having a pinch point of 5 °C, First law efficiency of 25.30% and the Second law efficiency of 64.40%. Hence selection of an Organic Rankine Cycle with R-123 as working fluid appears to be a choice system for utilizing low-grade heat sources for power generation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.