Abstract
In this work, parametric noise squeezing and parametric resonance are realized through the use of an electronic feedback circuit to excite a microcantilever with a signal proportional to the product of the microcantilever's displacement and a harmonic signal. The cantilever's displacement is monitored using an optical lever technique. By adjusting the gain of an amplifier in the feedback circuit, regimes of parametric noise squeezing/amplification and the principal and secondary parametric resonances of fundamental and higher order eigenmodes can be easily accessed. The exceptionally symmetric amplitude response of the microcantilever in the narrow frequency bandwidth is traced to a nonlinear parametric excitation term that arises due to the cubic nonlinearity in the output of the position-sensitive photodiode. The feedback circuit, working in both the regimes of parametric resonance and noise squeezing, allows an enhancement of the microcantilever's effective quality-factor (Q-factor) by two orders of magnitude under ambient conditions, extending the mass sensing capabilities of a conventional microcantilever into the sub-picogram regime. Likewise, experiments designed to parametrically oscillate a microcantilever in water using electronic feedback also show an increase in the microcantilever's effective Q-factor by two orders of magnitude, opening the field to high-sensitivity mass sensing in liquid environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.