Abstract

A general methodology for inverse thermal analysis of steady-state energy deposition in plate structures, typically welds, is extended with respect to its formulation. This methodology is in terms of numerical-analytical basis functions, which provide parametric representations of weld-temperature histories that can be adopted as input data to various types of computational procedures, such as those for prediction of solid-state phase transformations and mechanical response. The extension of the methodology presented here concerns construction of numerical-analytical basis functions and their associated parameterizations, which permit optimal and convenient parameter optimization with respect to different types of weld-workpiece boundary conditions, energy source characteristics, and experimental measurements adoptable as weld-temperature history constraints. Prototype inverse thermal analyses of a steel weld are presented that provide proof of concept for inverse thermal analysis using these basis functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.