Abstract
ABSTRACTIn toxicology and related areas, interaction effects between two substances are commonly expressed through a combination index evaluated separately at different effect levels and mixture ratios. Often, these indices are combined into a graphical representation, the isobologram. Instead of estimating the combination indices at the experimental mixture ratios only, we propose a simple parametric model for estimating the underlying interaction function. We integrate this approach into a joint model where both the parameters of the dose-response functions of the singular substances and the interaction parameters can be estimated simultaneously. As an additional benefit, this concept allows to determine optimal statistical designs for combination studies optimizing the estimation of the interaction function as a whole. From an optimal design perspective, finding the interaction parameters generally corresponds to a -optimality resp. -optimality design problem, while estimation of all underlying dose response parameters corresponds to a -optimality design problem. We show how optimal designs can be obtained in either case as well as how combination designs providing reasonable performance in regard to both criteria can be determined by putting a constraint on the efficiency in regard to one of the criteria and optimizing for the other. As all designs require prior information about model parameter values, which may be unreliable in practice, the effect of misspecifications is investigated as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.