Abstract
The structures of the perylene molecule in the first excited 11 0B2u state and the band shape (vibrational structure) of its fluorescence and absorption spectra are computed by the parametric method. A fragmentary approach and the molecular fragments H/1C= with the parameters obtained for acenes and polyenes are used to form molecular models in the excited state. It is shown that a model that corresponds to the choice of fragments with the parameters of acenes is the most optimal. The theoretical spectra satisfactorily reproduce both qualitatively and quantitatively, the basic specific features of the vibrational structure of the experimental spectra. Calculation results show high degree of transfer of the parameters of the method in a series of related molecules not only for acenes with “linear” arrangement of the rings (benzene, naphthalene, anthracene, etc.) but also for more complex structures (perylene). It is shown that the parametric method developed is efficient for predicting the vibronic spectra and the structure of the excited states of complex molecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.