Abstract

AbstractAn important issue in electrochemical oxidations of pollutant compounds, like organic dyes, is identifying a suitable correlation between operational conditions and electrochemical process performance. In such sense, this work deals with the parametric modelling of direct electrochemical incineration of crystal violet (CV) dye in a FM01-LC flow electrochemical reactor with a plastic spacer configuration using boron doped diamond (BDD) and dimensionally stable (IrO2and IrO2-SnO2-Sb2O5) anode plates. Mathematical model takes into account the fluid dynamics effects by the use of FM01-LC reactor considering mass transport rate of organic compound (R) from bulk solution to electrode surface, characterized by a dispersion coefficient and Pe number. The effect of strong oxidants produced in the electrode surface can be neglected since the characteristic time constant reaction of pollutants with such oxidants is lower than those describing the diffusion of organic compound to the electrode surface. Model parameters were estimated throughout a fitting method of the experimental data. The model proposed here predicted a 99.7 removal percentage of CV with boron doped diamond and IrO2-SnO2-Sb2O5anodes obtained experimentally, meanwhile a 79 % removal with the IrO2anode was reached at Re = 2204 during an electrolysis time of 7200 s for both cases. In the case of IrO2anodes, complex interactions between hydroxyl-radical and electrode surface provokes an intermediate kinetic process, with an effectiveness factor of 0.59. When BDD and IrO2-SnO2-Sb2O5anodes were used, the removal process mediated by hydroxyl-radicals absorbed in electrode surface was fully limited by mass transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.