Abstract

11C-metomidate (11C-MTO) PET-computed tomography (CT) imaging has shown good sensitivity and specificity for the classification of bilateral or unilateral overexpression of aldosterone. This work seeks to investigate the usefulness of parametric maps via kinetic modeling of 11C-metomidate data into the clinical diagnosis pathway. Twenty-five patients were injected with 172 ± 12 MBq of 11C-metomidate and a dynamic PET scan performed of the adrenal glands. A blood time-activity curve was drawn from a volume of interest in the left ventricle and converted to a plasma time-activity curve. Metabolite correction was performed with a population-based correction. We performed regional-based graphical Patlak analysis to calculate the regional uptake rate constant Ki(REG), and also calculated parametric maps of Ki(VOX) using a voxel-based technique. Comparison of Ki(REG), and the maximum lesion voxel from parametric maps Ki(mVOX) demonstrated a high correlation for all subjects (r2 = 0.96). Ki(mVOX) allowed differentiation between cases of active and inactive unilateral adenoma when compared to bilateral hyperplasia (P < 0.017), a feature not observed with standardized uptake ratios (SUVmax) analysis. Ki(mVOX) demonstrated a poor correlation of 0.68 with SUVmax, indicating the differences through the use of static and dynamic imaging. Three false-negative cases based on SUV analysis indicated that Ki(mVOX) was able to successfully differentiate the clinical presentation for these cases. Our work demonstrates that parametric Ki(VOX) was able to successfully differentiate between patients with bilateral hyperplasia and patients with unilateral adrenal adenoma in our cohort and that Ki may be considered be an additional useful metric to SUV in 11C-metomidate PET-CT imaging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.