Abstract
In the cluster analysis problem one seeks to partition a finite set of objects into disjoint groups (or clusters) such that each group contains relatively similar objects and, relatively dissimilar objects are placed in different groups. For certain classes of the problem or, under certain assumptions, the partitioning exercise can be formulated as a sequence of linear programs (LPs), each with a parametric objective function. Such LPs can be solved using the parametric linear programming procedure developed by Gass and Saaty [(Gass, S., Saaty, T. (1955), Naval Research Logistics Quarterly 2, 39–45)]. In this paper, a parametric linear programming model for solving cluster analysis problems is presented. We show how this model can be used to find optimal solutions for certain variations of the clustering problem or, in other cases, for an approximation of the general clustering problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.