Abstract

Motivated by detailed designs of industrial porous burners published in patents, the combustion of methane–air mixtures in a two-section porous burner has been studied numerically. The software FLUENT is used to solve a two-dimensional transient mathematical model of the combustion. In order to reveal the reality of the combustion in porous media, the user defined function (UDF) is used to extend the ability of FLUENT and enable two-dimensional distributions of temperature and velocity to be obtained. Some operating or property parameters, which mainly affect the functions and quality of the industrial burner design, such as the inlet velocity of the reactants, the equivalence ratio, the extinction coefficient and the thermal conductivity of porous media, have been investigated. The results show that the contours of temperature and velocity change considerably at the interface of the porous media and near the wall, the gas temperature at the low inlet velocity limit is higher than that for the high velocity limit, the thermal conductivity in the upstream section has more influence on the temperature than that in the downstream section and finally, the temperature profiles of both the gas and the porous skeleton vary considerably with changes of the radiative extinction coefficient of the large-pore porous media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.