Abstract
Nano-imprinting Lithography (NIL) has been considered as the most promising technique for nano-scaled fabrication and patterning. Recently, a new approach known as Laser-Assisted Direct Imprinting(LADI) has been proposed and demonstrated as an even more efficient way for direct nanofabrication and nanopatterning. In this study, we focused on silicon materials and utilized a single KrF excimer laser pulse (248 nm wavelength and 30 ns pulse duration) as the heating source. Molds of micro-scaled size have been prepared using conventional photolithography techniques. A working platform based on an Excimer Laser Micro-Machining system is constructed for LADI process. The influence of laser fluence and the imprinted pressure on the resulting structures was verifying by varying the laser fluence (1.0 ~ 1.2 J/cm2) and the imprinted load (3 ~ 9kg). The results have shown that the morphology and the imprinted depth were directly related to the laser fluence and the imprinted pressure. Quantitative data are obtained and will be addressed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.