Abstract

This paper is concerned with the computation of the inverse impulse response of a parametrized structural dynamics problem using reduced-order modeling and randomized excitations. A two-stages approach is proposed, involving the solution of both direct and inverse problems. In the first stage, the parametrized structural dynamics problem is formulated in the frequency domain, and solved using a reduced-order modeling approach. As a result, the parametric transfer function of the structure is obtained, and then readily transformed into a parametric direct impulse response (DIR). In the second stage, the parametric inverse impulse response (IIR) is computed. We use randomized excitations to generate synthetic samples inexpensively from the parametric DIR. Based on these, the parametric IIR is computed by minimizing the mean square error between the estimate and the samples. Most importantly, we show that the randomized excitations can be generated by sampling the frequency domain only. Hence, the parametric domain does not need to be sampled, which makes the computation of the parametric IIR very efficient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.