Abstract

At this moment we know a great variety of identification objects, tasks and methods and its significance is constantly increasing in various fields of science and technology. The identification problem is dependent on a priori information about identification object, besides that the existing approaches and methods of identification are determined by the form of mathematical models (deterministic, stochastic, frequency, temporal, spectral etc.). The paper considers a problem for determination of system parameters (identification object) which is assigned by the stochastic mathematical model including random functions of time. It has been shown that while making optimization of the stochastic systems subject to random actions deterministic methods can be applied only for a limited approximate optimization of the system by taking into account average random effects and fixed structure of the system. The paper proposes an algorithm for identification of parameters in a mathematical model of the stochastic system by non-gradient random searching. A specific feature of the algorithm is its applicability practically to mathematic models of any type because the applied algorithm does not depend on linearization and differentiability of functions included in the mathematical model of the system. The proposed algorithm ensures searching of an extremum for the specified quality criteria in terms of external uncertainties and limitations while using random searching of parameters for a mathematical model of the system. The paper presents results of the investigations on operational capability of the considered identification method while using mathematical simulation of hypothetical control system with a priori unknown parameter values of the mathematical model. The presented results of the mathematical simulation obviously demonstrate the operational capability of the proposed identification method.

Highlights

  • Electronic Systems about identification object, besides that the existing approaches and methods of identification are determined by the form of mathematical models

  • The paper considers a problem for determination of system parameters which is assigned by the stochastic mathematical model including random functions of time

  • The paper proposes an algorithm for identification of parameters in a mathematical model of the stochastic system by non-gradient random searching

Read more

Summary

ELECTRONIC SYSTEMS

Параметрическая идентификация стохастической системы неградиентным случайным поиском Докт. техн. наук, проф. Параметрическая идентификация стохастической системы неградиентным случайным поиском Докт. В статье рассматривается задача определения параметров системы (объекта идентификации), заданной стохастической математической моделью, включающей в себя случайные функции времени. Предложен алгоритм идентификации параметров математической модели стохастический системы неградиентным случайным поиском, особенностью которого является его применимость к математическим моделям практически любого вида, так как примененный алгоритм не зависит от линеаризации и дифференцируемости функций, входящих в математическую модель системы. Предложенный алгоритм обеспечивает поиск экстремума заданного критерия качества в условиях внешних неопределенностей и ограничений путем использования случайного поиска параметров математической модели системы. Представлены результаты исследования работоспособности рассматриваемой методики идентификации путем математического моделирования гипотетической системы управления при априорно не известных значениях параметров математической модели. А. Параметрическая идентификация стохастической системы неградиентным случайным поиском / А.

Математическая формулировка задачи
Неградиентный случайный поиск
Модель измерителя
При такой постановке задачи управляющая матрица системы имеет вид
ББлоoкк Ξ Ξ

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.