Abstract
Integrating solar photovoltaic (PV) systems into the modern power grid introduces a variety of new problems. The accurate modelling of PV is required to strengthen the system characteristics in simulation environments. Modelling such PV systems is reflected by a nonlinear I–V characteristic curve behaviour with numerous unknown parameters because there is insufficient data in the cells’ datasheet. As a result, it is always a priority to identify these unknown parameters. To extract features of solar modules and build high-accuracy models for modelling, control, and optimization of PV systems, current–voltage data is required. A hybrid evolutionary algorithm is proposed in this paper for precise and effective parameter estimation from experimental data of various PV models. The proposed algorithm is named as hybrid flower grey differential (HFGD) algorithm and is based on the hybridization of flower pollination algorithm (FPA), grey wolf optimizer (GWO), and differential evolution (DE) algorithm. For performance evaluation, CEC 2019 benchmark data set is used. To increase the accuracy of the output solutions, we also combined the Newton–Raphson approach with the proposed algorithm. Four PV cells/modules with diverse characteristics, including RTC France Single Diode Model (SDM), RTC France Double DM (DDM), Amorphous Silicon aSi:H, and PVM 752 GaAs Thin-Film, are used to validate the effectiveness as well as the feasibility of the proposed algorithm. The parameter results obtained through the utilization of HFGD algorithm have been compared with other evolutionary algorithms through aspects of precision, reliability, and convergence. Based on the outcomes of the comparison, it has been seen that the HFGD algorithm obtained the lowest root-mean-square error (RMSE) value. Friedman’s rank and Wilcoxon test are carried out for the statistical analysis of the proposed work. The I–V and P–V characteristics are drawn along with the box plot for different PV cells/modules. Statistical and experimental results show the superiority of the proposed algorithm with respect to its counterpart.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.