Abstract

AbstractIn Gothenborg, Sweden a new pedestrian bridge was needed. In the proposed design, the bridge was composed of a Fiber‐Reinforced Polymer (FRP) deck and a main steel structure, which provided two intermediate supports to the deck. The design of the main steel structure was the responsibility of Systra AB in Sweden, while the FRP deck was designed by Royal HaskoningDHV in the Netherlands. The main design challenge met was the dynamic behaviour of the bridge due to human induced vibrations. Besides the technical challenges, there were also challenges to find a reliable and efficient way to for the two companies to collaborate while in two different countries. To accommodate these challenges, it was decided to create a parametric coordination model, in Rhino/Grasshopper, from which the design and calculation models were generated. This coordination model served as the single source of truth ‐ ensuring that at any time both companies had an up‐to‐date version of the model. This proved crucial as the dynamic behaviour of the bridge was significantly influenced by the interaction between the steel and FRP components. Due to the parametric nature of the model, a variation study was possible, where a total of 200 variants were produced to find an optimal design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.