Abstract

This paper introduces a parametric design of a new 3D compliant parallel manipulator based on pantograph linkage for micro/nano applications. Furthermore, the modal shapes and natural frequencies analysis are carried out versus the flexure joint parameters which are a crucial point for the controller selection/design and geometry optimization. The new compliant manipulator provides decoupled 3DOF translational motion with fixed orientation of the end effector and it has significantly high workspace to size ratio. The modified manipulator aims to enlarge the workspace by enhancing the values of magnification factors of input motion and by reducing the parasitic motion and geometric stiffening of the original manipulator. The main parameters that affect the performance of the compliant manipulator are determined based on the generated results of finite element analysis which is performed using ANSYS software. The results have successfully demonstrated the improvements of the proposed manipulator in terms of workspace size, magnification factors, joint stiffening and parasitic motions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.