Abstract
A detailed cost model has been developed to parametrically determine the program development and production cost of photovoltaic, solar dynamic, and dynamic isotope (DIPS) space power systems. The model is applicable in the net electrical power range of 3 to 300 kWe for solar power and 0.5 to 10 kWe for DIPS. Application of the cost model allows spacecraft or space-based power system architecture and design trade studies or budgetary forecasting and cost benefit analyses. The cost model considers all major power subsystems (i.e., power generation, power conversion, energy storage, thermal management, and power management/distribution/control). It also considers system cost effects such as integration, testing, and management. The cost breakdown structure, model assumptions, ground rules, bases, cost estimation relationship format, and rationale are presented, and the application of the cost model to 100-kWe solar space power plants and to a 1.0-kWe DIPS is demonstrated.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.