Abstract

We demonstrate a novel technique for cooling a degenerate Fermi gas in a crossed-beam optical dipole trap, where high-energy atoms can be selectively removed from the trap by modulating the stiffness of the trapping potential with anharmonic trapping frequencies. We measure the dependence of the cooling effect on the frequency and amplitude of the parametric modulations. It is found that the large anharmonicity along the axial trapping potential allows to generate a degenerate Fermi gas with anisotropic energy distribution, in which the cloud energy in the axial direction can be reduced to the ground state value.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.