Abstract

We experimentally and theoretically study the interaction of broadband polychromatic laser pulses with an optically dense resonant extended medium without population inversion. Experimental (probe field-pumping beam) measurements of the transmission and amplification spectra were carried out in the plasma of a positive neon glow-discharge column containing a large number of metastable atoms. The strong coupling in the field-matter system and the collective behavior of the atomic system in a resonant field were attributable to a high (∼1012 cm−3) density of atoms at the lower (metastable) level of the optical transitions under consideration and to a relatively low intensity of the interacting laser beams. We observed a broadband weakening of the probe field in the absence of pumping and its strengthening in the line wings in the presence of a strong field. We develop a theoretical model for the parametric amplification of collective interactions in dense extended media based on the solution of the semiclassical Maxwell-Bloch equations for conditions under which the pumping field does not destroy the dipole interaction between atoms through probe-field photons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.