Abstract
AbstractAluminum alloy is a widely used material in railway vehicle structures. In order to accurately analyze the crack propagation mechanism of Aluminum alloy welding structures and predict their crack propagation life, this study focuses on the A7N01 Aluminum alloy and proposes a full‐field strain solution method based on the least‐squares method. For the first time, digital image correlation (DIC) experimental measurements are combined with the finite element analysis method to determine the shape and size of the plastic zone at the crack tip of the compact tension (CT) specimen. And it also calculates the crack propagation driving force parameters of the Christopher–James–Patterson (CJP) model using traditional crack propagation driving parameters. The research results revealed that the plastic zone at the crack tip captured by DIC experiments is in good agreement with the finite element simulation results. Additionally, the crack growth rate curve of the A7N01 Aluminum alloy, fitted based on the CJP model, is insensitive to the stress ratio. The results offer an effective approach to utilizing the da/dN‐∆KCJP curve in analyzing A7N01 Aluminum alloy and welded structural failures, broadening the scope of engineering applications for the CJP model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Fatigue & Fracture of Engineering Materials & Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.